A NOVEL INTRAMOLECULAR ADDITION OF PHOTOCHEMICALLY OR THERMALLY GENERATED KETENE TO A [4π + 2σ] ELECTRONIC SYSTEM

Makoto NITTA,* Akihiko OMATA, and Masamichi NAMIKI

Department of Chemistry, School of Science and Engineering,

Waseda University, Shinjuku-ku, Tokyo 160

The photochemical or thermal reaction of exo-6-methoxy-1,5,6-trimethyl-or exo-6-methoxy-1,3,5,6-tetramethyltricyclo[3.2.1.0^{2,7}]-oct-3-en-8-one resulted in the novel formation of rapidly equilibrating valence isomers of norcaradiene-cycloheptatriene derivative via a ketene intermediate.

It is well established that several 2,4-cyclohexadienones photoisomerize to the ketenes of general structure A, which undergo intramolecular cycloaddition to afford the starting dienones or bicyclo[3.1.0]hex-2-en-4-ones. 1) The photochemistry of 2,4,6-cyclooctatrienone also involves a ring opening to the ketene B which has been directly observed by low-temperature infrared spectroscopy and recyclized to the starting trienone upon warming. 2) All of these ketenes involve π -bonds to intervene in the electrocyclization, whereas little notice has been focused on the reactions of ketene with electronic systems which involves both π -bonds and constrained or polar σ -bond except cyclopropane ring. Previously we have investigated the photoreaction of 1,5-dimethyl-6-oxacyclopropylidenetricyclo[3.2.1.02,/]oct-3-en-8-one (1). The compound 1 photoisomerized to the ketene 2 which was detected by low-temperature infrared spectroscopy. The ketene 2 collapsed to the lactone 3 by an intramolecular ene-type reaction involving the epoxide ring. 4)

Further interest in the chemical behaviors of ketenes to the intramolecular electronic system containing both π -bonds and constrained or polar σ -bond prompted us to investigate the photochemical or thermal reaction of exo-6-methoxy-1,5,6-trimethyl and exo-6-methoxy-1,3,5,6-tetramethyltricyclo[3.2.1.0 2 ,7]oct-3-en-8-ones ($\underline{4a}$ and $\underline{4b}$). We would like to present here an example of the ketene which undergoes a facile intramolecular addition to a [4π + 2σ] electronic system to result in the formation of rapidly equilibrating valence isomers of norcaradiene-cycloheptatriene derivative.

Irradiation of <u>4a</u> in anhydrous acetonitrile (0.5 mol dm⁻³) using 300 nm lamps ⁶⁾ for 10 h and the following preparative TLC afforded <u>5a</u> and <u>6a</u> in 31 and 8% yields, ⁷⁾ respectively, with the recovery of <u>4a</u> in a 38% yield. Similarly <u>4b</u> gave <u>5b</u> and <u>6b</u> in 36 and 6% yields, respectively, along with 17% of the starting ketone <u>4b</u>. The structures of the photoproducts <u>5a</u> and <u>5b</u> were confirmed as equilibrating valence isomers of norcaradiene-cycloheptatriene derivative on the basis of the spectral data which have been reported by Schmid and his coworkers. ⁸⁾ The prolonged irradiation

R OME or
$$\Delta$$

OME CO_2Me
 CO_2Me

of $\underline{4a}$ and $\underline{4b}$ in acetonitrile for 50 h resulted in the formation of $\underline{6a}$ or $\underline{6b}$ in 40% or 55% yield along with unidentified material. This result seems to suggest that $\underline{5a}$, \underline{b} are the primary photoproducts and $\underline{6a}$, \underline{b} might be the secondary products originated from $\underline{5a}$, \underline{b} .

To confirm this point, the photoreaction of $\underline{4a},\underline{b}$ was carried out in CD_3OD and monitored by NMR spectroscopy. As shown in Fig. 1, the initial decrease of $\underline{4a}$ accompanied the increase of $\underline{5a}$. Upon prolonged irradiation, $\underline{6a}$ increased gradually, and $\underline{5a}$ decreased gradually. Much the same was observed in the case of the photoreaction of $\underline{4b}$. Therefore it is suggested that $\underline{6a},\underline{b}$ should be the secondary products originated from $\underline{5a},\underline{b}$. This type of reaction has been reported in the phtochemistry of norcaradiene derivatives. Furthermore CD_3O group was not incorporated instead of CH_3O group of $\underline{5a},\underline{b}$ or $\underline{6a},\underline{b}$.

The compounds $\underline{4a}$, \underline{b} have a skeleton of $\underline{1}$ or photolabile 3-methylcar-4-en-2-one which has been shown to photoisomerize to a ketene derivative. Therefore a ketene should be the reasonable intermediate. Support for the intermediacy of the ketene 7 was obtained by conducting the irradiation of the film of $\underline{4a}$ at 77 K.

Fig. 1. The composition of $\frac{4a}{4}$, $\frac{5a}{4}$ and $\frac{6a}{4}$ on the photoirradiation of $\frac{4a}{4}$ in CD_3OD at various times.

After irradiation of 4a for 20 min with a high pressure mercury lamp through CaF, cell window for infrared spectroscopy, the infrared spectrum was recorded to exhibit a ketene band at 2105 cm⁻¹. On warming to room temperature, the 2105 cm⁻¹ band disappeared completely to show a new band at 1718 cm⁻¹ corre-The carbonyl absorpsponding to 5a. tion corresponding to 6a was not ob-These facts clearly indicate that the ketene 7 was formed by photochemical process, which then thermally rearranged to 5a. Exactly the same discussion would be possible for the

Scheme 1

photoreaction of 4b.

Furthermore, in photoirradiation of $\underline{4a}$ in acetonitrile-diethylamine (9/1), the ketene $\underline{7}$ was trapped to afford an amide $\underline{8}$, of which structure was identical with the authentic sample. The compound $\underline{8}$ should be derived from the nucleophilic addition of diethylamine to $\underline{7}$ and the subsequent base (HNEt₂) induced elimination of methanol.

Similar to the photochemical reactions of $\underline{4a}$, \underline{b} , the heating of $\underline{4a}$ in refluxing 1,2-dichlorobenzene for 20 h afforded $\underline{5a}$ and $\underline{6a}$ in 48 and 9% yields, respectively. Prolonged heating (50 h) of $\underline{4a}$ under similar conditions resulted in the disappearance of $\underline{4a}$ or $\underline{5a}$, and in formation of $\underline{6a}^{11}$) in 47% yield along with unidentified material after purification by TLC. The thermal reaction of $\underline{4b}$ also afforded the similar results to those of $\underline{4a}$. These thermal reaction should also involve the initial Cope rearrangement of $\underline{4a}$, \underline{b} to the ketene $\underline{7}$.

The mechanism of the photochemically or thermally generated ketene 7 to afford 5 is of considerable interest. Few examples are known for the reaction of ketene with C-OR bond. Triethyl orthoformate is known to react with a ketene to give the In the present photolysis of $\underline{4a}$, \underline{b} in CD₃OD, no solvent addition product to the ketene and no incorporation of CD_3O group instead of CH_3O group of $\underline{5a}$, \underline{b} or 6a,b were observed. Therefore the conversion of $\underline{7}$ to $\underline{5}$ seems to be an intramolecular An attractive reorganization pathway should be path A or path B via the conformer 7-A or 7-B, respectively, as depicted in Scheme 1. The formulae 7-A and $\overline{\text{7-B}}$ represent an interaction of the LUMO of a ketene moiety and the HOMO of a hexadienyl system involving $[4\pi + 2\sigma]$ electrons. The conformation of 7-A seems to be favorable for a Diels-Alder reaction to recyclize to the starting ketone 4.

evidence for this process is obtained at the present stage. The path A can afford $\underline{9}$ in which $\mathrm{CO}_2\mathrm{Me}$ group is located in the endo position. A facile ring opening of $\underline{9}$ to cycloheptatriene $\underline{10}$, and the subsequent ring inversion $\underline{14}$ of $\underline{10}$ to the more stable form can give equilibrating valence isomers $\underline{5}$. The path B can afford $\underline{5}$ directly. It is not determined here whether path A or path B is operative in the conversion of $\underline{7}$ to $\underline{5}$. The formation of $\underline{6}$ is explained by thermal $\underline{11}$ and photochemical $\underline{9}$ cleavage of cyclopropane ring of the norcaradiene form in $\underline{5}$. The detail concerning selective cleavage of the 6-7 bond as compared to the 1-7 bond is obscure. Another possible pathway affording $\underline{6}$ is an ene-type reaction as in the case of ketene $\underline{2}$. However this pathway seems to be less favorable based on the low-temperature photolysis or the experimental result presented in Fig. 1.

References

- a) O. L. Chapman and J. D. Lassila, J. Am. Chem. Soc., 90, 2449 (1968); b) J. Griffithes and H. Hart, J. Am. Chem. Soc., 90, 3297 (1968); c) N. R. Morris and A. J. Waring, J. Chem. Soc., Chem. Comm., 526 (1969); d) G. Quinkert, B. Bronstert, D. Egert, P. Michaelis, P. Juges, G. Prescher, A. Syldark, and H-H. Perkampus, Chem. Ber., 109, 1332 (1976), and references cited therein.
- 2) L. L. Barber, O. L. Chapman, and J. D. Lassila, J. Am. Chem. Soc., 91, 531 (1969).
- 3) a) For a review: K. N. Houk, Chem. Rev., <u>76</u>, 1 (1976); b) The epoxy ketenes have been reported to undergo the vinylcyclopropane-cyclopentene type rearrangement: P. M. M. Van Harrd, L. Thiji, and B. Zwannenburg, Tetrahedron Lett., 803 (1975); A. Padwa, A. Ku, and S. N. Krueger, Tetrahedron Lett., 2409 (1976).
- 4) M. Nitta and H. Nakatani, Chem. Lett., 957 (1978).
- 5) J. P-Katalinic, J. Zsindely, and H. Schmid, Helv. Chim. Acta, <u>57</u>, 223 (1974); M. Nitta, A. Omata, and H. Sugiyama, Bull. Chem. Soc. Japan, in press.
- 6) Rayonet RPR-300 nm lamps, Pyrex filter.
- 7) The yields of 5a,b were presented after purification by preparative GC.
- 8) G. Müller, T. Winkler, J. Zsindely, and H. Schmid, Helv. Chim. Acta, <u>59</u>, 1763 (1976); The compound <u>5a</u> or <u>5b</u> has been obtained by heating 1,5-dimethyl- or 1,3,5-trimethyl-6-methylenetricyclo[3.2.1.0^{2,7}]oct-3-en-8-one with CH₃ONa. It is also found that norcaradiene-cycloheptatriene-equilibrium is shifted to the norcaradiene side to > 95% in 5a and 5b.
- 9) J. S. Swenton, K. A. Burdett, D. Madigan, T. Johnson, and P. D. Rosso, J. Am. Chem. Soc., 97, 3428 (1975), and references cited therein.
- 10) J. E. Baldwin and S. N. Krueger, J. Am. Chem. Soc., 91, 2396 (1969).
- E. Ciganek, J. Am. Chem. Soc., 89, 1458 (1967); K. N. Klump and J. P. Chesik,
 J. Am. Chem. Soc., 85, 130 (1963).
- 12) J. P-Katalinic, J. Zsindely, and H. Schmid, Helv. Chim. Acta, 56, 2796 (1973).
- 13) H. Ulrich, "Cycloaddition Reaction of Heterocumulenes", Academic Press, New York, London, 1967, p 89.
- 14) F. A. L. Anet, J. Am. Chem. Soc., <u>86</u>, 458 (1964); F. R. Jensen and L. A. Smith, J. Am. Chem. Soc., <u>86</u>, 956 (1964).

(Received November 25, 1981)